QM2 Concept Test 9.5

The lowest energy level of the unperturbed Hamiltonian \widehat{H}^0 is two fold degenerate. i.e., $\widehat{H}^0 \psi_{1a}^{\ \ 0} = E_1^{\ \ 0} \psi_{1a}^{\ \ 0}, \widehat{H}^0 \psi_{1b}^{\ \ 0} = E_1^{\ \ 0} \psi_{1b}^{\ \ 0}, \left\langle \psi_{1a}^{\ \ 0} \middle| \psi_{1b}^{\ \ 0} \right\rangle = 0.$ If the first order correction to the energy $E_1^{\ \ 1}$ can be calculated by $E_1^{\ \ 1} = \left\langle \alpha \psi_{1a}^{\ \ 0} + \beta \psi_{1b}^{\ \ 0} \middle| \widehat{H}' \middle| \alpha \psi_{1a}^{\ \ 0} + \beta \psi_{1b}^{\ \ 0} \right\rangle$, the state $\alpha \psi_{1a}^{\ \ 0} + \beta \psi_{1b}^{\ \ 0}$ is called a "good" state where α and β are complex numbers. Choose all of the following statements that are correct. (Assume the first order correction to the energy is not zero).

- 1) A "good" state is a stationary state of the unperturbed system \widehat{H}^0 .
- 2) The perturbed system $\hat{H}^0 + \hat{H}'$ has only two different "good" states $\alpha \psi_{1a}^0 + \beta \psi_{1b}^0$ since the unperturbed state is two fold degenerate. (Ignore the overall phase.)
- 3) The different "good" states $\alpha \psi_{1a}^{0} + \beta \psi_{1b}^{0}$ for the perturbed system $\hat{H}^{0} + \hat{H}'$ are orthogonal to each other.
- A. 1 only B. 3 only c. 1 and 2 only D. 1 and 3 only E. All of the above

QM2 Concept Test 9.6

Suppose the eigenstates $|a\rangle$, $|b\rangle$, and $|c\rangle$ of \hat{H}^0 are 3-fold degenerate and a perturbation \hat{H}' acts on this system. Choose all of he following statements that are correct if $|a\rangle$, $|b\rangle$, and $|c\rangle$ form a "good" basis for the perturbed system. (Define $\langle i | \hat{H}' | j \rangle = H'_{ij}$).

1)
$$H'_{aa} = H'_{bb} = H'_{cc}$$

2) $H'_{ab} = H'_{bc} = H'_{ca} = 0$
3) $|a\rangle$, $|b\rangle$, and $|c\rangle$ are orthogonal to each other.

A. 1 only B. 2 only C. 1 and 3 only D. 2 and 3 only E. All of the above

QM2 Concept Test 9.7

Consider the Hamiltonian $\widehat{H}^0 + \widehat{H}' = V_0 \begin{pmatrix} 1 - \varepsilon & 0 & 0 \\ 0 & 1 & \varepsilon \\ 0 & \varepsilon & 2 \end{pmatrix}$, where $\varepsilon \ll 1$.

The basis vectors for the matrix in the order $|a\rangle$, $|b\rangle$, and $|c\rangle$ are the energy eigenstates of the unperturbed Hamiltonian \hat{H}^0 ($\varepsilon = 0$). Choose all of the following statements that are correct about the <u>unperturbed</u> system.

- 1) The distinct energies of the unperturbed system are V_0 and $2V_0$.
- 2) The energy eigenstates of \hat{H}^0 are two fold degenerate with energy V_0 .
- 3) The \hat{H}^0 matrix in the degenerate subspace is $V_0 \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$.

A. 1 only B. 2 only C. 1 and 3 only D. 2 and 3 only E. All of the above.

QM2 Concept Test 11.7

For hydrogen atom, the Zeeman term in the perturbation is given by $H'_Z = \frac{e}{2m}(\vec{L}+2\vec{S})\cdot\vec{B}_{ext}$. Choose all of the following statements that are true about the intermediate field Zeeman effect, where neither the Zeeman term H'_Z nor the fine structure term H'_{fs} dominates.

- 1) The "good" basis states for the perturbation are the coupled states $|n, l, s, j, m_j\rangle$.
- 2) The "good" basis states for the perturbation are the uncoupled states $|n, l, m_l, s, m_s\rangle$.
- 3) Both the coupled and uncoupled states are equally "good" states for the perturbation.

A. 1 only B. 2 only C. 3 only D. Not enough informationE. None of the above